

Engineering Mechanics Institute Conference and Probabilistic Mechanics & Reliability Conference (EMI/PMC 2024)

Chicago, Illinois | May 28-31, 2024

Physics-informed Graph Neural Network for prediciting Power Generation of Wave Farms

Suraj Khanal, Gaofeng Jia

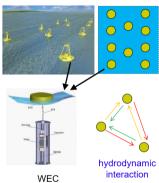
Colorado State University

 $May\ 28,\ 2024$

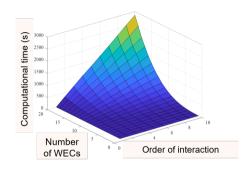
Outline

- ► Background
 Wave Energy Converters
 Surrogate Modelling
 Hydrodynamic Coefficients
- ► Graph Neural Networks
 Introduction to Graph
 GNN: Fundamentals
 Invariant GNN with Random Node Features
- ► Implementation Details
- ► Results
- ► Conclusion

Wave Energy Converters (WECs)



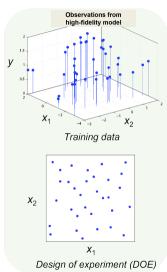
- WECs (buoys) are often deployed in arrays called wave farms
- Depending on layout, different performance, e.g. power

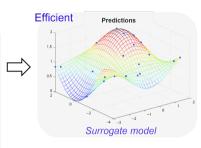


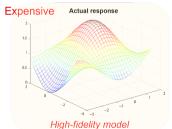
- For high fidelity models and larger arrays, predicting power for different layout is expensive
- Parametric study, design optimization, uncertainty quantification become impossible
- Surrogate Model preferred

Suraj Khanal GNN 2 / 19

Surrogate Modelling





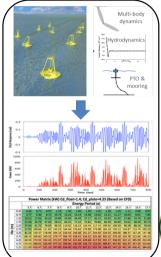


- Polynomial Response Surfaces
- Gaussian Process(GP)
 Model
- Artificial Neural Networks
 (ANN)

Approximation

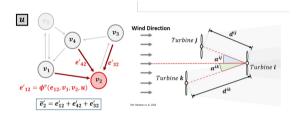
Hydrodynamic Coefficients

- *Li et. al. 2023* used PGP to predict hydrodynamic coefficients on wave farms and achieved good results
- Hydrodynamic Coefficients
 - Added Mass (am): real, $n_{wec} \times n_{wec}$
 - Added Damping (ad): real, $n_{wec} \times n_{wec}$
 - Wave Excitation Force (F): complex, n_{wec}
- Added mass and added damping: effects of radiated waves from WECs
- Wave Excitation Force: effect of incident and diffracted waves
- Power difficult to model, hence work on coefficients



Graph Neural Network (GNN)

Good result on Wind Farm, analogous to Wave Farm

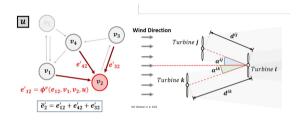


GNN on wind farm (Bentsen 2022)

Suraj Khanal GNN 5 / 1:

Graph Neural Network (GNN)

Good result on Wind Farm, analogous to Wave Farm



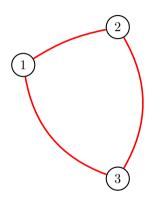
GNN on wind farm (Bentsen 2022)

Advantages of GNN:

- Scalability: easy to scale for larger arrays
- Performance: captures intricate relationship with high accuracy
- Efficiency: can operate in parallel

Suraj Khanal GNN 5 / 19

What is Graph?

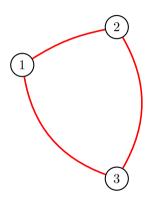


A simple Graph

- Graph: nodes/vertices and edges
- G = (V, E, U) where, V: node attributes, E: edge attributes, U: global attributes
- Connectivity of Graph: Adjacency Matrix, a_{ij}

Suraj Khanal GNN 6 / 1

What is Graph?



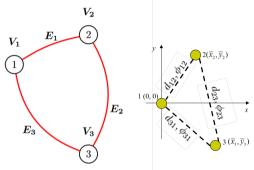
A simple Graph

- Graph: nodes/vertices and edges
- G = (V, E, U) where, V: node attributes, E: edge attributes, U: global attributes
- Connectivity of Graph: Adjacency Matrix, a_{ij}
- Examples: social network, citation datasets

Citation Graph

Suraj Khanal GNN 6 /

Graph Structure in WECs

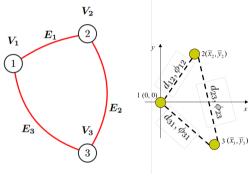


3 WEC as a graph

• V : buoys, E: relation/interaction between two buoys

Suraj Khanal GNN 7 / 1

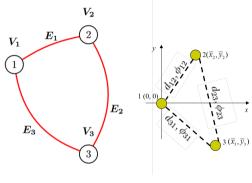
Graph Structure in WECs



3 WEC as a graph

- V : buoys, E: relation/interaction between two buoys
- Each node has features that are independent of other buoys $V_n = \{x_i, y_i\}$
- Each edge has features that depend on i^{th} and j^{th} nodes(buoys) $E_n = \{d_{ij}, \phi_{ij}\}$
- Connectivity: interaction between buoys. No interaction, no connectivity

Graph Structure in WECs



3 WEC as a graph

- V : buoys, E: relation/interaction between two buoys
- Each node has features that are independent of other buoys $V_n = \{x_i, y_i\}$
- Each edge has features that depend on i^{th} and j^{th} nodes(buoys) $E_n = \{d_{ii}, \phi_{ii}\}$
- Connectivity: interaction between buoys. No interaction, no connectivity

 Given different arrays can be represented with graphs, how do we predict corresponding power for a given array/graph?
 ⇒ GNN

Graph Neural Network (GNN)

• GNN: An optimizable transformation that updates various features of the graph (node, edge, global) but preserves the connectivity of the graph

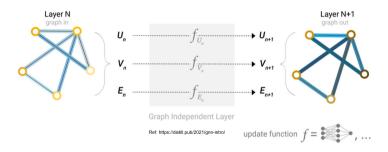


Schematics of a Graph Neural Network

Suraj Khanal GNN 8 / 19

Graph Neural Network (GNN)

• GNN: An optimizable transformation that updates various features of the graph (node, edge, global) but preserves the connectivity of the graph



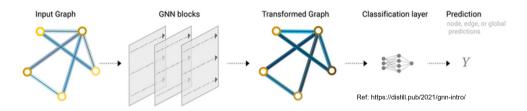
Schematics of a Graph Neural Network

• Given updated features, how to predict?

Suraj Khanal GNN 8 / 19

Predictions from GNN

Aggregate features and then use a linear layer for prediction

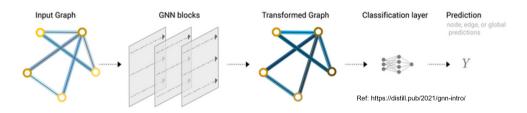


An end-to-end Prediction Block with a GNN Model

Suraj Khanal GNN 9 / 1:

Predictions from GNN

Aggregate features and then use a linear layer for prediction

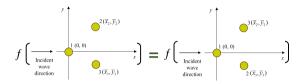


An end-to-end Prediction Block with a GNN Model

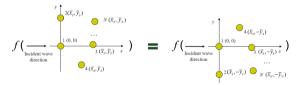
- Methods: GCN, GAT, GraphSAGE
- An invariant type GNN with randomly initaited node features used in the study, inspired by the works of Satorras et. al. (2021) and R Sato (2024)

Suraj Khanal GNN 9 / 19

Physics of Wave Farm



Permutation Invariance



X-Axis Reflective Invariance

Suraj Khanal GNN 10 / 1

Invariant GNN with Random Node Features

Satorras et. al. (2021) have shown that the following update functions result in invariances of translation and reflection to node and edge features:

$$\mathbf{e}_{ij}^{l+1} = \phi_e(\mathbf{h}_i^l, \mathbf{h}_j^l, ||\mathbf{x}_i^l - \mathbf{x}_j^l||^2, \mathbf{e}_{ij}^l)$$

Edge Update

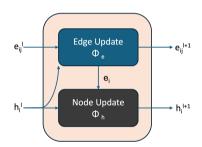
$$\mathbf{e}_i^{l+1} = \sum_{j \neq i} \mathbf{e}_{ij}^l$$

Edge Aggregation to Node

$$\mathbf{h}_i^{l+1} = \phi_h(\mathbf{h}_i^l, \mathbf{e}_i^{l+1})$$

Node Update

where, ϕ_e and ϕ_h are edge and node update functions respectively, for example: MLP

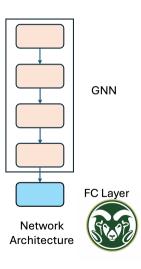


A GNN Layer

Suraj Khanal GNN 11 / 19

Implementation Details

- GNN layers stacked upon each other and a fully connected layer at the end for required output size
- Edge Features: $\mathbf{e}_{ij} = [\mathbf{I}_m(d_{ij}), \ \mathbf{K}_m(d_{ij}), \ cos(\theta_{ij})] \quad m = 1, 2, ... 10$ where $\mathbf{I}_m(\cdot)$ and $\mathbf{K}_m(\cdot)$ are mth order Bessel functions of the first and the second kind
- Node Features: $\mathbf{h}_i = \text{Randomly generated from uniform distribution in } [0, 1]$
- Although randomly initialized, the network updates these features through the learning process



Implementation Details (contd...)

- Implementation is done in Python using PyTorch and PyTorch Geometric
- Edge Update Function (ϕ_e): 4 hidden layers each with 200 units and a linear layer of 20 units at the end
- Node Update Function (ϕ_h) : 3 hidden layers each with 100 units, followed by a hidden layer of 50 units and a linear layer of 10 units at the end
- After each hidden layer, ReLU is applied as non-linear layer
- MSE is used as loss function and model trained for 5000 epochs. Train:Val:Test Split = 6400:800:800
- Learning Rate Scheduler and Early Stopping which are standard practices in ML are also implemented
- For learning rate scheduler, PyTorch's 'ReduceLRonPlateau' is used, which reduces learning rate up to a certain limit if the validation loss does not decrease within a threshold for some epochs

Suraj Khanal GNN 13 / 19

Results

Training and Validation Loss

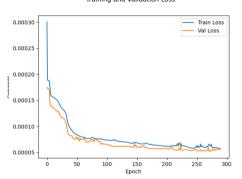
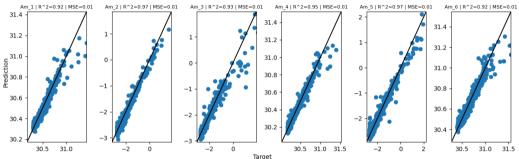


Figure: Loss over Epochs for Added Mass Coefficient Training

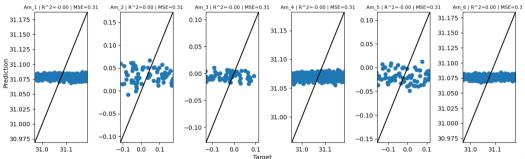
Suraj Khanal GNN 14 / 19

Prediction of Added Mass for $\omega = 0.3$



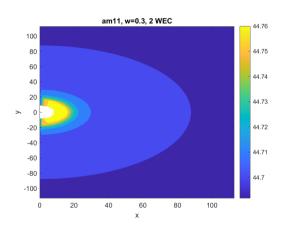
Suraj Khanal GNN 15 / 1:

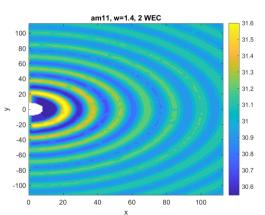
Prediction of Added Mass for $\omega = 1.4$



Suraj Khanal GNN 16 / 19

Variation of Added Mass Coefficient





Suraj Khanal GNN 17 / 1

Conclusion

- An invariant Graph Neural Network with randomly initialized node features was designed to predict hydrodynamic coefficients of wave energy converter arrays
- For lower frequencies of incoming wave, the model predictions are good $(R^2 > 0.90)$ but poor performance for higher frequencies
- The underlying variation of coefficients for higher frequencies is too difficult to capture for the given model architecture

Suraj Khanal GNN 18 / 19

Conclusion

- An invariant Graph Neural Network with randomly initialized node features was designed to predict hydrodynamic coefficients of wave energy converter arrays
- For lower frequencies of incoming wave, the model predictions are good $(R^2 > 0.90)$ but poor performance for higher frequencies
- The underlying variation of coefficients for higher frequencies is too difficult to capture for the given model architecture

Future Work:

- Analyse the case for higher frequencies and get good predictions
- Work on other hydrodynamic coefficients
- Model power generation after getting good results on coefficients

Suraj Khanal GNN 18 / 1

Acknowledgement

This research is supported in part by the National Science Foundation Engineering Design and System Engineering Program under grant number CMMI-2034040. This support is gratefully acknowledged.

Suraj Khanal GNN 19 / 19